Benefits of Using Nanoparticle Tracking Analysis in Nanoscale Material Characterization
contributed by Malvern Panalytical |
Nanoscale Material Characterization: a Review of the use of Nanoparticle Tracking Analysis (NTA)
Summary
This white paper describes the central role of high resolution particle size and concentration measurement nanoparticle research. The technique of Nanoparticle Tracking Analysis (NTA) is described and compared to other characterization methodologies, and comparative papers are cited. A wide range of application studies is then summarized with specific reference to the use and value of NTA.
For those seeking a full listing of NTA experience to date by application type, the NanoSight publication “Nanoparticle Tracking Analysis - A review of applications and usage 2010 - 2012, (Carr B and Wright M (2013)) and its successors provides a detailed catalogue. This item is available from your local Malvern Instruments representative or email [email protected].
Introduction
Nanoscale materials, in the form of nanoparticles, are playing an important and growing role across a range of different applications and industries which seek to exploit the unique properties exhibited by these materials, such as their very high surface area to volume ratio and high number. The overall properties and stability of many manufactured products often depends upon the ability to produce particle populations within fine tolerances, without contaminants or aggregates. The concentration of particles within a suspension is another factor that may have an effect upon the desired outcome of the product. It is clear then that there is a real need to characterize a variety of different properties when analyzing nanoparticles, in order to understand the relationship between the formulation and the overall bulk characteristics of the materials (Fedotov, 2011). Similarly, Paterson et al. (2011) have reviewed the requirement for quantified nanoparticle concentrations in environmental media in order to assess the risks to biological species due to potential nanoparticle exposure.
Log in or register to read this article in full and gain access to The Medicine Maker’s entire content archive. It’s FREE!