Like most websites The Medicine Maker uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Subscribe to Newsletter

Protein stability analysis technologies for the biopharmaceutical industry

A buyer's guide to protein stability measurement platforms

Protein stability analysis technologies for the biopharmaceutical industry


This buyer's guide discusses the available instrumentation for protein stability characterization, and what to consider when choosing stability assays. Protein stability and higher order structure is used to assist with biocomparability studies.


Most biotherapeutics are proteins or protein derivatives, and the single biggest class of biopharmaceuticals currently on the market or in development are monoclonal antibodies (mAbs). The specific binding nature of antibodies has provided opportunity for the biopharmaceutical industry to use them to modulate the activity of pharmaceutically-relevant target molecules in order to control or prevent disease.

A key difference between traditional small molecule pharmaceuticals and biopharmaceuticals is that the latter need to be processed and delivered in liquid form. Proteins are notoriously unstable in solution, so approaches need to be developed whereby these biotherapeutic molecules can be manufactured and stored for long periods in solution without degrading. This is where protein stability assays have proved invaluable in the development and manufacture of biotherapeutics.

Clearly, real-time stability assays are required to assess the longevity or shelf life of a protein in solution. However, these are often time-consuming, so faster, predictive methods have been established to accelerate the learning process from which stable biologic drug formulations and process conditions can be developed.

Most common among these predictive approaches are thermal unfolding methods which monitor physical properties of the protein as a function of temperature. Using these data, the temperatures at which a protein undergoes conformational changes can be determined and used for comparative studies. It is assumed that molecules which require higher temperatures to induce conformational changes have a longer shelf life or are more stable. However,there are some important exceptions to this that will be explained later in this document.

Unfolding or thermal stability profiles can be obtained for different drug candidates in the same buffer to compare the intrinsic stability of potential biotherapeutics under a given set of conditions. This application is termed ‘Candidate Selection’.

Read the full article now

Log in or register to read this article in full and gain access to The Medicine Maker’s entire content archive. It’s FREE!

Receive content, products, events as well as relevant industry updates from The Medicine Maker and its sponsors.
Stay up to date with our other newsletters and sponsors information, tailored specifically to the fields you are interested in

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

Register to The Medicine Maker

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Medicine Maker magazine