Cookies

Like most websites The Medicine Maker uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.

Using Isothermal Titration Calorimetry in biophysical characterization of epigenetic protein

This white paper summarizes how Isothermal Titration Calorimetry (ITC) is used for characterization of proteins involved in epigenetic regulation

Abstract

Epigenetic regulation of genomic DNA for gene expression is important in cellular differentiation and the development of an organism. Epigenetics also contributes to human diseases. On a molecular level, epigenetics involves modification of the histone proteins and DNA that make up chromatin.  Protein families have been identified which mediate these modifications, and characterization of the specific binding interactions are important to define the specificity and affinity of the interaction. This characterization is also important in developing drugs which inhibit these chromatin-binding proteins.

Introduction to epigenetics

Epigenetics is the study of heritable changes in gene expression caused by nongenetic mechanisms, without alterations in gene structure or DNA sequence. The epigenetic state of a cell evolves during the cellular differentiation and development of an organism, and epigenetic changes are linked to cellular reprogramming. Because epigenetic mechanisms may also be responsible for the integration of environmental responses at the cellular level, they potentially play an important role in the development of some diseases.

Epigenetic regulation of gene activity is complex and not yet fully understood, and involves transcription factors, growth factors and perhaps hormones. Epigenetic processes also involve the modification of chromatin (Figure 1). A histone octamer, composed of two copies of each of the histone proteins H2A, H2B, H3, and H4, is wrapped by a strand of 145-147 bp DNA, forming a nucleosome core. Multiple nucleosomes pack together to form chromatin.

Read the full article now

Log in or register to read this article in full and gain access to The Medicine Maker’s entire content archive. It’s FREE and always will be!

Login

Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Medicine Maker magazine
Register

Or Login via Social Media

By clicking on any of the above social media links, you are agreeing to our Privacy Notice.

Newsletter

Send me the latest from The Medicine Maker.

Sign up now

Register to The Medicine Maker

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Medicine Maker magazine

Register