Using Taylor Dispersion Analysis for Evaluating the Self-Association Behavior of Insulin with Concentration
contributed by Malvern Panalytical |
Assessing the self-association and stability of Insulin under varying formulation conditions using Taylor Dispersion Analysis
Abstract
TDA with UV-detection is used to follow self-association of protein-based systems, and critically is able resolve the smaller monomeric species since measurements are not adversely affected by the presence of a small amount of oligomer in mixtures.
Using Insulin as a case study, this Application Note demonstrates how TDA can be used to monitor size changes induced by changes in oligomeric state of a protein with a change in concentration. It also shows how TDA can be used to provide complementary size information to existing techniques such as DLS, with the advantages of its inherent capability to track changes in oligomeric state without adverse bias from larger species or aggregates in solution (due to mass-weighted detection).
Introduction
Taylor Dispersion Analysis (TDA) is an orthogonal technique for sizing and stability studies of biomolecules in solution. Studies have shown that hydrodynamic radius (Rh) measurements from TDA on monodisperse systems such as monoclonal antibodies (mAbs), are comparable to data obtained using the well-established and complementary technique of Dynamic Light Scattering (DLS)1.
Protein stability is one of the primary concerns during biopharmaceutical development, as it negatively impacts upon immunogenicity and potency of the biotherapeutic. Screening of candidate molecules for developability under a variety formulation conditions is therefore a critical aspect in early stages of the development pipeline.
It is important to monitor any potentially adverse effects that buffer matrices, excipients and surfactants may have on the molecule of interest, such as changes in conformational stability and self-association. However observing changes occurring specifically to the target molecule can be analytically difficult, complicated by the complex background of the excipients themselves.
Log in or register to read this article in full and gain access to The Medicine Maker’s entire content archive. It’s FREE!